Non-local to local transition for ground states of fractional Schrödinger equations on bounded domains
نویسندگان
چکیده
We show that ground state solutions to the nonlinear, fractional problem \begin{equation*} \begin{cases} (-\Delta)^{s} u + V(x) = f(x,u) & \text{in } \Omega, \\ 0 \R^N \setminus \end{cases} \end{equation*} on a bounded domain $\Omega \subset \R^N$, converge (along subsequence) in $L^2 (\Omega)$, under suitable conditions $f$ and $V$, solution of local as $s \to 1^-$.
منابع مشابه
On the uniqueness of ground states of non-local equations
We review our joint result with E. Lenzmann about the uniqueness of ground state solutions of non-linear equations involving the fractional Laplacian and provide an alternate uniqueness proof for an equation related to the intermediate long-wave equation.
متن کاملOn ground state of non local Schrödinger operators . ∗
We study a ground state of a non local Schrödinger operator associated with an evolution equation for the density of population in the stochastic contact model in continuum with inhomogeneous mortality rates. We found a new effect in this model, when even in the high dimensional case the existence of a small positive perturbation of a special form (so-called, small paradise) implies the appeara...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topological Methods in Nonlinear Analysis
سال: 2021
ISSN: ['1230-3429']
DOI: https://doi.org/10.12775/tmna.2020.038